新闻列表
你当前的位置是:首页>公司新闻>燃料电池电堆组装

燃料电池电堆组装

来源:鑫台铭时间:2021-06-10 13:52浏览次数:- | 分享加入收藏

燃料电池电堆由端板、绝缘板、集流板、单电池(包含双极板和MEA)组成,他们之间通过压紧力被组装到一起。电堆由这些零部件之间通过螺钉和端板组合施加的压紧力被组合成了一个短电堆。下面看看电堆是如何组装、组装过程中需要关注什么、以及有哪些电堆组装设计吧。


燃料电池电堆组装


1. 电堆组装装置和流程:

用于燃料电池电堆组装的设备最基本的功能是向电堆施加夹紧力。除此之外,电堆组装机还有方便装配的校准杆、方便均匀施加夹紧力的压缩块、底座以及一些气密性检测设备等。

1)将双极板、膜电极(此处为碳纸-CCM-碳纸)、双极板按顺序依次叠加在已安装好绝缘板、集流板的下端板上,组装出第一个单电池;

2)重复以上步骤,利用组装辅助定位装置把单电池整齐地叠加成电堆;

3)安装好最后的单电池后,叠上上端板部分,使用组装机施加设计好的压力将电堆压紧;

4)向电堆的进气歧管安装好气密性测试设备(此处用氮气测试),按照测试流程进行气密性检测;

5)气密性检测通过后,在保持压力的情况下,安装好螺杆(压缩力保持装置)。随后即可撤除压力,至此一个电堆就组装完毕了。

2. 组装方式:

燃料电池电堆压力机的压紧力可以通过点压力、线压力和面压力来提供。因此衍生出来了许多组装方式,通过不同的压紧方式来将电堆组装起来。目前市面上比较常见的有螺杆压紧方式和绑带式压紧两种电堆压紧方式。

3. 压紧力对电堆的影响:

压紧力对于燃料电池电堆来说影响重大,电堆的性能和稳定性会受其影响。压紧力既不能太大也不能太小,它必须在一个合理的范围内。从电堆结构上看,压紧力会对各个部分都有影响。

MEA:

较小的压紧力也会导致双极板与GDL之间的接触面积与接触力不够,导致接触电阻上升,电堆性能下降。同时压紧力还会影响GDL层的孔隙率,进而影响GDL的通水和通气性。较大的压紧力会导致GDL产生塑性形变,改变其特性。高压力对质子交换膜来说也有较大的风险,较高的压力配合质子交换膜的膨胀收缩过程,会使质子交换膜更容易出现裂纹和针孔。另外,有对质子交换膜的研究显示高压力会导致氟化物的加速产生,而这是导致质子交换膜寿命减少的一个重要原因。

密封结构:

当压紧力太小时,电堆内的密封结构无法起到足够的密封作用,会导致漏气从而引发安全问题。如果压的不够紧的话,各零部件之间的摩擦力也会相应减小。当电堆遇到晃动、冲击等会对电堆产生横向应力的情境时,各零部件之间的摩擦力就不足以保持电堆的结构稳定,零部件之间的错位会导致电堆无法正常工作。

胶垫或者O圈的电堆密封结构经常使用硅胶材料制成。有研究显示,虽然温度是对其寿命的主要影响因素,但是像电堆中这样的高应力也会一定程度上加速这个老化过程。老化的密封材料主要表现是其厚度会下降,而这个现象会反过来影响压缩力,因此在有些电堆组装的设计中,加入了自适应或者可调节压缩力的装置。

流场结构:

GDL用的可能是碳纸或者无纺布,当受到压缩时,GDL发生的形变会使流场结构受到改变,从而对电堆性能产生影响,尤其是有较好弹性的无纺布。

压紧力优化:

因此需要利用期望函数等级(desirability funcition)来预测出其最优设计。关于压紧力优化的研究有很多,主要的焦点在于在保证压紧力达到最小压紧力的前提下,如何平衡孔隙率和接触电阻。基于连续性等效模型(continous equivalent model)分别计算了在不同紧固压力下的界面接触电阻(ICR, interfacial contact resistance)、孔隙率。因此需要利用期望函数等级(desirability funcition)来预测出其最优设计。

4. 主要研究方向:

1、最优化压紧力。

2、理解压紧力对电堆各零部件及对电堆性能的影响。

3、对电堆组装过程的评估和优化手段。

4、针对电堆组装方案设计燃料电池电堆各零部件和提升电堆组装效率。

什么是铝型材自动装框设备?燃料电池电堆结构详解

NEW & CASE案例·新闻

经典案例

专题页

新闻资讯

电话咨询